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Abstract. Spectroscopic diagnosis of the temperature and delordan 1969; Munro et al. 1971; Gabriel & Jordan 1971; Dere
sity structure of hot optically thin plasmas from emission lin& Mason 1981; Doschek 1987; Mason et al. 1994).

intensities is usually described in two ways. The simplest ap- A fundamental property of hot solar plasmas is their basic
proach, the ‘line ratio’ method, uses an observed ratio of émjgnomogeneity. This is obvious from directimages of the Sun’s
sionline intensities to determine a ‘spectroscopic mean’ valueQfrona and transition region which show a wealth of fine scale
electron temperaturél,.) or electron densityn..). The mean gy cture down to the observable limits of resolution (e.g., Golub
value is chosen to be the theoretical valuelpfor n. which g pasachoff 1997). It is confirmed by less direct spectroscopic
matches the observed value. The line ratio methodis stable, legdrk which reveals differing values of,, 7, for different line

ing to well defined values aff) or (n.) for each line pair but, ratips (see e.g. discussions by Doschek 1984, 1987). Strong
in the realistic case of inhomogeneous plasmas, these are hghdmogeneity is expected also from physical considerations (a
to interpret since each line pair yields different mean paramgaticularly interesting perspective, addressing why the plasmas

eter values. The more general ‘differential emission measugg; ot appear to be even more inhomogeneous than already
(DEM) method recognizes that observed plasmas are begﬁéerved, is given by Litwin & Rosner 1993).

described by distributions of temperature or density along the Th ¢ intensit ¢ wal | ¢ ticall
line of sight, and poses the problem in inverse form. It is well € emergent Intensities ot spectral ines from optically

known that theDEM function is the solution to the inverseih'n plisrTas are determtmedtkquy |tndtegralz ann?I the Itlne of S'%ht
problem, which is a function df, n., or both. Derivation of rough plasma parameters (that depend mostly on temperature

D E M functions, while more generally applicable, is unstable ?ond den5|ty)l throggh the plasma. There are two common ap-
noise and errors in spectral and atomic data. The mathemat gla_ches o inferring _plasma properties f_rom observed spectral
relation between these two approaches has never been prec gé%)ntensm_es. Cpn5|der the_ case in which the ten‘1_peratu_re: of
defined. In this paper we demonstrate the formal equivalent & plasma IS desweq. The S|mplest appToa.Ch' the I!ne ratio’ or
of the approaches, and discuss some potentially important gpectroscopic mean method, involves fmdmg the smgle value
plications of methods based upon combining the line ratio a the electron temperature from a theoretical calculation of the

DEM approaches. ra_tio of carefully sele_cted emission Iin_es, that is in agreement
with the observed ratio. A spectroscopic mean value of the tem-
Key words: Sun: corona — Sun: UV radiation — Sun: particl@erature is derived for each line pair. If the plasma were truly
emission — accretion, accretion disks — atomic data isothermal, then the derived spectroscopic mean values for all
line pairs would coincide with the actual plasma temperature,
to within observational and theoretical errors. This approach
was applied as early as 1941 to planetary nebulae by Menzel
et al. (1941), and is reviewed by Gabriel & Jordan (1969) and
Knowledge of the densities and temperatures of space plasRSon & Monsignori-Fossi (1994). The other method is to re-
is essential if we are to understand their most basic structuggst the above mentioned line integrals into suitable form for
Without this knowledge, almost nothing can be said regardir]gversionv, in which one solves for a functiog(7.), which
the generation and transport of mass, momentum and enefgy source term that describes the distribution of material as a
Thus, since early in the era of space-borne spectroscopy f{y&ction of temperature along the line of sightZ’.) is called
have faced the task of inferring plasma electron densitigs, the ‘Differential Emission Measure ¥ EM) Functiort. This

and temperatured;., for hot solar and other astrophysical plasgives a general characterisation of the distribution of the plasma
mas from optically thin emission line spectra (e.g. Gabriel &ith respect to temperature.

1. Introduction and motivation
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The integral equation formalism for temperature sensitighip between these two methods. We show that there is a precise
lines was first discussed by Pottasch (1964) and put on a rigirespondence betweénh~ M functions and a suitable com-
orous mathematical basis for arbitrary geometry by Craig glete set of mean spectroscopic densities and/or temperatures in
Brown (1976). The formulation was later extended tbEM  situations where these can be defined. We suggest methods that
function((n.) differential inn. for isothermal plasmas (Alm- should improve the stability of inversions fo(T.), ¢(n.) and
leaky et al. 1989, and references therein). The concept wds.,T.), by using hybrid schemes. Such schemes combine
also generalised to the bivariate case:0t.,T.) by Jefferies line ratio techniques with th® EM formulation to minimize
etal. (1972a,1972b) although their definition contained an ersystematic errors that can arise from inaccurate or invalid ioni-
corrected inthe independent formulation by Brown et al. (199 Fation balance calculations.

Formulation of how this general bivariate case could be cast as
an inverse problem and in principle solved eluded these earli ™M
authors and was finally established by Hubeny & Judge (1995)
and elaborated by Judge et al. (1997). The total powert?; radiated by a particular spectral line labelled

Although more general than the line ratio method, it is well from an optically thin plasma occupying a voluries:
known that theD EM formulation is prone to errors in the so-

/// hv; Aing,)dV  ergs™
v

athematical issues and background

lution arising from the ill-posed nature of the inverse operatord? = (1)
i.e. instability of the solution to errors in the spectral and atomic

data (Craig & Brown 1976; Judge etal. 1997). Thisis intrinsic t@hereh is Planck’s constant;; is the frequency of the line4;
the nature of the inverse problem, in which a continuous dist(s~") is the Einstein A-coefficient, and, ;) (cm~?) is the popu-
bution function (or discretization thereof) is sought from a finitition density of the upper level(:). Following standard prac-
number of data points. Furthermore, there is significant lineice, we define a line emission coefficiedt; (n.(r), T.(r)),
dependence between the ‘kernels’ in the integral equations (seemalised to the electron density squared as

Sects 3, 4 and 5)There is thus no single mathematical solu-

tion to the DEM problem, and the intrinsic ill-posedness must l}ei(ne(r), T.(r)) = -
addressed from the outset, essentially by smoothing the desired dm - ng
DEM function sothat, in aloose sense, the number of indepgRen Eq. (1) becomes:

dentD EEM values does not exceed the number of measurements

(e.g. Craig & Brown 1986). There are, as well as these fund}ai-: Ar / K;(ne(r), To(r)) n(r) d®r ergs™'. 3)
mental limitations of theD EM method, practical problems 1%

concerning the nature and magnitude of errors in the theor%’&; writing the equations in this form, we note that sev-

cal calculation of the intensities of emission lines. Forexampl&,m implicit assumptions have been made (see, e.g., Judge
Judge etal. (1995) showed that §1&. ) problem also has [arge o 5| 1997 for details), including that of ionisation equilibrium.

sources of systematic error in excess of known errors inline i (n.(r), T, (r)) is almost independent of density. for col-

tensities, which they suggested are due to the breakdown of {51y excited permitted transitions decaying to the ground
fundamental assumption of ionisation equilibrium made in fog—t te of a given ion. This equation, with full dependence on

mulating the problem. In addition Judge et al. (1997) conclud%e andT., included in the emission coefficient, was studied by

that systematic errors in the atomic physics, and in the ionisggge s et al, (1972a,1972b), by formulating the integrand in
tion balance, make straightforward inversion/fién., Tc) Very - toms of a function of electron density and temperature. This

difficult or mtractablef. N » function was later identified (see Brown et al. 1991) as the bi-
The ‘mean value’ or ‘line ratio” approach on the other hang i-+e D £/ funtion ofn, andT., namelyy(n., T, ). Follow-

gives well defined results which are appealing because they gfgine derivation of Brown et al. (1991) we make the following
simple to derive, and they can remove, through careful Chm&ﬁange of integration variable in Eq. (3):

of lines, large sources of uncertainty arising from errors in ion-
ization balance. However, they have the serious drawback thaf _ dn.dTe dL, 7 cm? (4)
the results are not easy to interpret forinhomogeneous plasmas,  |Vn.||VT.| sinf,, 1. ¢

ifferent line ratios for example giving different mean densiti . .
differe ine ratios forexample giving differe ean dens Eﬁer?ce, transforming the volume integral of Eq. (1) to a path
even for lines peaking in the same temperature range because 0

their different detailed sampling of the temperature distributio'éqtegrazgzghhrﬁee d”:f;g'%ﬁgggo?izatl:]l?;g;n;a?; Eee'tvlz/iee(rai vec-
(cf. Almleaky et al. 1989 and Brown et al. 1991). me:Te g

ors Vn, and VI, normal to surfacess,, , Sp, of constant

. . t
The exact relathnshlp between the ‘WO approa_ches heﬁlgctron density and temperature respectively. The reader is re-
never been exploredin depth, although particular situations were

) . . red to Fig. 1 in Brown et al. (1991) for a perspective of the
discussed by Brown etal. (1991). Motlvated.by this, by the a eometry of the system and a discussion of the degenerate case
vent of new data from the CDS and SUMER instrumentson tie =~ 0. So for every spectral linwe have
SOHO spacecraft, and by the desire to remove the large sourdes’s —
of systematic error that plague inversions of emission line daé

a_ -1
(e.g., Judge et al. 1995; Judge et al. 1997), we study the relatioh-— 4W/T . Ki(ne, Te)M(ne, Te) dnedT. ergs )

= 2 D) erg em® st s, (2)




S.W. MCIntosh et al.: The relation between line ratio and emission measure analyses 335

where, from Brown et al. (1991M(n., T.) (cm~?) is defined and on dividing throughout b, we may expresg;; in terms of

as the ‘mean’ spectroscopic temperatufg, ), ;, for the particular
n2 line pair (i, j), i.e.
M(n&TE) fine,TE ‘V”e' |VT6| Sineane danTﬂ (6) Rij = 4;(7«??» - Sz(<Te>1_}) (13)
Usually, one does not directly observe the total radi- s(Te)
ated powerP;, but the intensity ¢rg cm2st~! s~ 1), I, = whereS;;(T.) = % is assumed to be a monotonic, bi-
P; /(47 S), whereS is the area of the projected volufie Defin-  jective (invertible) function which has a unique inverse on the
ing 1 = M/S, which has units of cm®, we find temperature domain considered when we restrict our study to
resonance lines, i.e. differefif andnodependence om,, only.

I, = / / Ki(ne, T)p(ne, T.) dnedT, (7) For these conditions the relationship is almost always satisfied.

T. Jne Therefore, on inspection, the relation betwe&h),; and the

We are now in a position to define the differential emission me@bserved line ratiog;; is given by

sure inn., ¢(n.), as the rec_iprocal density—gra_dient—weightegTe>ij _ Sl‘;l(Rij) (14)
mean square electron density and, correspondingly the differen- ) ) . ,

tial emission measure i, £(7,.) as the reciprocal temperature- 10 formulate an expression fe(7’ ) in terms of the ‘mean”
gradient-weighted mean square electron density, obtained frofgC{roscopic temperatures we must return to Eq. (10). On di-

Eq. (6) as follows: viding through Eq. (_10) by any otherling intensl%’;, (Tt #7),
known to depend differently oii, from line: (hence the nota-
C(ne) :/ ji(ne, T.)dT, ) tion j(i)), we obtain
Te .
R:,J(z) = ]{)szg :/T g(Te) Kz/(Te) dT, (15)
f(Tp) :/ N(ne,Te)dne (9) @ )
ne with K/(T,) = Kl(bm This expression thus gives the ratio

Thus, interms of physical interpretation of a set of frequenof thetheoreticalir{t(e)nsity for line: to the observedntensity
integrated line intensitiek alone, the differential emission mea-of line j(7). At this stagel;, and henceR; . .,, are not known
sures im, andT, must form the spectroscopic basis for furthequantities. If we setR;j by = R; ;, the observed line ratio,
interpretation of the raw data, such as determining the enetpgn Eq. (15) becomes an integral equation with known LHS,
balance or determining whether the data are compatible withd known kerneK’(T.), in which&(7.) is the quantity to be
an atmosphere at constant pressure (see Craig & Brown 193&ermined. Consider formingratios of the intensities of a set
Judge etal. 1997). Formulation of the relationship between thesemission lines to form a vectd:
functions and the ‘mean’ observed quantities is therefore of belg = (Ru1). R y@ys oo Ruyio) (16)

efit to the solar physics community.

If we discretize Eq. (15) with respect ., then the equation
becomes a matrix equation of the form:

!

Consider alinefor which K;(n., T ) is a weak function of den- E=K ¢ (17)
sity, such as a resonance lirf€;(n., T.) can then be replacedThe rows ofK’ are simply rows of kernels of Eq. (10) divided
by K;(T.). In this case we have the spectral line intensity by observed line intensities. This has the (poorly conditioned,
see Craig & Brown 1986) analytical solution:

(=K 'R (18)

For two such lines, 7, the ratio of the two line intensities is ~ This equation for ratios permits to be determined at up to
discrete temperatures. The above illustrates that the equations

R — I _ fTC §(Te) Ki(Te) dTe (11) for line ratios can be simply re-written in a standard form, which
YL [ T K(Te) dT can thus be used in numerical algorithms and will be discussed
) o o ] _ below. But we have not yet written the formal equivalence be-
and if the emission coefficients are different, then the ratio dgyeen thet (73, ) functions and a set of line ratios, and their cor-

pends or.. If the plasma is homogeneous in temperature, i.gsponding mean derived temperatures. From the above, this is
isothermal, we could express tieE M = {(Te) function as  clearly just

&(T.) = & 6(T. — (T¢.)) such that, on substituting this expres- o
sion into to Eq. (11) and integrating over the whole temperature= K’ {S;;((T.);)}, (19)
domain, we have

3. Relationship betweer¢(T,) and (T.)

L= [ )KL (10)
Te

where{S;;((T.);;)} denotes the array of line ratios indexed by
R — &0 K ((Te)) (12) i. Thisexpressionrelates the DEM to the set ofspectr0§copically
YT g K ((TL)) derived temperatures through the inverse of the mafix
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4. Relationship betweer((n.) and (n.) (ne)). Using Eq. (7) to form the line ratio of two lines with

Here we use an approach analogous to that of AImIea@ybGISZ andy, (i # j):
et al. (1989). Consider an optically thin plasma that is isother- L Jrf. Ki(ne,T)u(ne, T.) dn.dT,

mal with T, = Tj,. The total emission of a line labellédgiven Rij = — = (22)
. I; K; es Te e Te e Te
by Eqg. (7) and Eq. (8) is J fo" i(e, Te)pu(ne, Te) dned
On substitution ofi(n., T. ) given above into Eq. (22) and per-
I = / ((ne) Ki(ne) dne, (20)  forming the double integral we obtain
since K;(n.) = K;(n.,T. = Tp). Since the plasma has nor M = M;;((ne), (T.)) (23)

ij =
uniquen., we can nevertheless define a spectroscopic ‘mean’ Kj((ne), (Te))

electron density for the any ratio of lines displaying some degrq,\g try to determinen.) and (Z.) does not make sense, since
of density sensitivity, for instance using a resonance line a”dtﬂ@re is just one equation, but two unknowts,) and (T.).

intersystem line from a common ionisation stage of a particukf, it is clear that another equation is needed. One possible
ion. For this pair(s, j), we seek t.he electron dgnsity Qf a hogqtion is to assume that,) = T° whereT?, is the coronal
mogeneous plasma that would yield the same line r&lip, as o nisation equilibrium temperature for the particular ion(s) un-
the inhomogeneous plasma under observation. To achieve {5 ¢y,qy. This is in fact a common assumption made for solar
we defineC(ne) = o d(ne — (ne)) , where(ne) is the ‘mean’  .,on4 fines (e.g., Mason 1991). If this assumption (or some-
spectroscopic electron density as defined earlier. thing else) is made, then for a set of emission lines of temperature

By direct analogy to the steps producing Egs. (11) through, 4 density sensitivity, we see that the [dir.), (T.)) can be
(19) we can construct a relationship for the discretized differefjzarmined provided there exists an inverse funcﬁigﬁl ie.
tial emission measure im., ¢, in terms of a set of ‘mean’ spec- s

troscopic densitieén.);;, and the operatal;; (n.) = ?E’fb% ((me)ij, T{}
For purposes of writing expressions formally equivalent to those _ L
above, this operator must now Assumedo be unique (mono- epeating the steps taker_l to. formglate Eq..(15.) we.d|V|de
tonic, bijective). Thus, through !Eq. ©) by.anothelr line mten.s@(i), again displaying

the required functional (either density sensitive or temperature
¢ = K/il{H_1(<ne>ij)}; (21) sensitive) behaviour to produce:

ij

) = M;'(Rij) (24)

where K’ " is to be understood as the equivalent (but clearf§:.j(i) = IL = / Ki(ne, To)p(ne, Te) dnedT.  (25)
not identical) matrix to that in Eq. (19). While this expression i@ JTelne

assumes that the inverse operaibigl(<ne>ij) has a unique discretizing this with respect ta. and7,. we have the following
solution, notice that a numerical solution for analogous to

Eq. (18), makes no such assumption. In fact, it removes arg-
biguities that can arise from the non-unique inverse operatof’(" —
Hi;1(<ne>1;j) for certain line ratios in important ions. This is
because, in a numerical implementation, this operation is igrforming an operation described in Hubeny & Judge (1995)
performed. The vector element is instead set to the observedwa-re-index froml = 1,...,m andq = 1,...,ptox =

tio R; ;). An example of non-unique inverse operators occuts. .., mp so that Eq. (26) may be recast in a standard ma-
for certain ratios of intersystem lines in the boron isoelectroniiix form, where theAn., AT, terms are combined to form a
sequence (e.g., see Brage et al. 1996, Fig. 2). measure of the redimensioned space, natdly. ) 7.) and
absorbed into the redimensioned forn¥of(n., T, ). Therefore

Eq. (26) becomes:

mp
Z wing, T;) Ki(ng, Ti) An. AT, (26)
=1 gq=1

5. Relationship betweenu(n., T.) and (n.), (T.) pairs

mn

Inthe general case we wish to obtain information aboutthe formm =~ /
of the bivariate differential emission measyién., 7. ) from a m’](” n ;_:1 Ue K, @7
set of ‘mean’ spectroscopic densiti€s,.), and temperatures, a

(T,), discussed above. These ‘mean’ values are usually deriw/gere Uis the 1 dimensional transform of the 2 dimensional
individually, as described earlier, by looking at line pairs thdgnction n.. This has an analytical solution of the form (c.f.

are mostly sensitive t@,, or n., but not both. Egs. (19) and (21))
Following the method of the previous sections, we seek 1 ) o
mean parametets.. ) and(7.) of the homogeneous plasmathat/ = K {M;" ((ne)s;, T35) }- (28)

will yield the same line ratio as the observed inhomogeneous

plasma. Some care must be taken here, as can be seen by, fochgvm’nK’_1 is equivalent, but not equal to that of Eq. (19). Also,
ing earlier sections, assuming that the bivaria® )/ function the comments above on the uniqueness of inverse operators in
can be approximated by(n.,T.) = pod(T. — (Te))d(n. — the( problem apply equally to the bivariate problem.
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6. Applications in Eq. (21). Inthe treatment of the general bivarigte M func-

tion u(ne, Te.), Sect. 4 shows that we can obtain a representa-

The above formalism suggests new ways in which line ratio aﬂgn of u(ne, T,) when the conditions for Sects. 2 and 3 occur

DEM methods may be utilized together in an optimal fasmo@imultaneouslyi(e.situations where ‘mean’ densities and tem-

Consider Eg. (11), and for illustration let us restrict our discu eratures are actually defined). Essentially this means that for

sion to the tempgra.ture. depen_d.en.t problem only for a plas ?arge enough set of observed lines with different temperature
close to (;oronal |on|sat.|on eqwhbnum. To illustrate the ISSUG g density characteristics, a relationship of the form of Eq. (28)
let us split each kernel into the following factors: will hold for the particular set of inferred ‘mearf(T.), (n.)}

h % N (4 ion e pairs.' . . . .
K; = 41/ A — (D)  Tion Tel TH 1o cmdsr—! s71,(29) Finally, we pointed out some potentially important appli-
T ThonTle Mel TH T cations of inversion schemes based upon minimizing differ-
Where—’;’f‘” , is the population density of the upper atomic levéiNces between observed and computitbs, instead of the

ore usualntensities These offer the possibility of removing
large, systematic errors that may arise from uncertain ionization
balance, as have been suggested to explain solar data (Judge

of the line divided by that of the ion to which it belongs (th
subscription is a label for the ion charge, including the neu
tral case),”==, the ionic abundancei<, the elemental abun-

dance relative to hydrogen ang, the relative abundance of€t al. 1995), and have been demonstrated to be the dominant
H to electrons respectively Agediscussed at length by Ju rce of error in standard inversions of line intensities (Judge
' al. 1997).
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7. Summary



